OSI Model

Tasks involved in sending a letter

Figure 2.4 An exchange using the OSI model

2.2

Summary of OSI Model Layers

The application layer is responsible for providing services to the user.

7

6

5

4

3

2

1

The presentation layer is responsible for translation, compression, and encryption.

The session layer is responsible for dialog control and synchronization.

The transport layer is responsible for the delivery of a message from one process to another.

The network layer is responsible for the delivery of individual packets from the source host to the destination host.

The data link layer is responsible for moving frames from one hop (node) to the next.

The physical layer is responsible for movements of individual bits from one hop (node) to the next.

Layer	Application/Example	Central Devi Protocols	ce/	DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	User Applications SMTP		Process
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the 'Translator' for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation - Data conversion - Data compression - Data encryption - Character Set Translation	JPEG/ASCII EBDIC/TIFF/GIF PICT	G	
Session (5) Allows session establishment between processes running on different stations.	Synch & send to ports (logical ports) Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.	RPC/SQL/NFS NetBIOS names	AT	
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control Message segmentation • Message acknowledgement • Message traffic control • Session multiplexing	TCP/SPX/UDP	WA	Host to Host
Network (3) Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing · Subnet traffic control · Frame fragmentation · Logical-physical address mapping · Subnet usage accounting	Routers	Y Can be used	Interne
Data Link (2) Provides error-free transfer of data trames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch—NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	Switch Bridge WAP PPP/SLIP Land	on all layers	Network
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Rits & Volts	Hub		

Figure 2.18 Relationship of layers and addresses in TCP/IP

Most local-area networks use a 48-bit (6-byte) physical address written as 12 hexadecimal digits; every byte (2 hexadecimal digits) is separated by a colon, as shown below:

07:01:02 01:2C:4B

Vendor Name Unique ID for NIC

A 6-byte (12 hexadecimal digits) physical address.